
Appendix: Introduction to Object-Oriented Concepts

Object-oriented technology is rooted from knowledge representation techniques

namely Frame and Semantic Net commonly used in Artificial Intelligence.

Therefore, object-oriented technology is very useful in software abstraction and

modeling. This is proven with the introduction of UML (Unified Modeling Language)

as the industry standard today.

Today, object-oriented technology is not only adopted by software developers as

methodology, it also being used extensively in other area besides software

development, such as database technology and as business modeling.

What is an Object?
From the OO perspective, object is simply something that exists and made sense to us

in the problem domain during process of modeling.

We should be able to uniquely identify each of the objects in our world based on their

Identity.

Object can be physical or logical. Both physical and logical objects exist in the world

that we are in. The different is that the physical objects are with physical appearance,

whereas the logical objects do not have it. For example, computer is a physical object,

whereas security policy is a logical object.

Object can be simple or complex under certain context and/or perception Simple

object is the object that we take it as whole, whereas we are interested to study other

sub-objects that form the Complex object. For example, car is a simple object for the

parking system, but it is a complex object for the manufacturing process. Both

parking system and manufacturing process are the contexts.

Abstraction
It is not necessary to know every single details of the object in our world in order to

understand them or solving problem. In the process of modeling the real world,

normally we are only interested in certain aspects of the real world for our purpose.

The Abstraction is the process of focusing the essential aspects of the world that will

help us in achieving our objective. Abstraction is the human ability in dealing with

complexity.

How to Understand an Object?
The process of understanding an object is basically refers to three aspects of the object.

Namely:

1) Attributes

2) Behavior

3) Relationships

We can identify the Attributes and Behavior aspects of the object by observing the

individual object, whereas the Relationships aspect required us to relate the object

with other objects.

Classification
There are many objects in our world. Inherently human equip with the ability in

classifying things/objects. In order to recognize and understand them systematically

we classification them base on similarities. Listed below are the strategies we

normally use in the process of Classification:

1) Base on same attribute set

2) Base on same attribute value

3) Base on same behavior

4) Base on same relationship

As layman, we might use all the possible combination of abovementioned strategies

during the process of classification.

Because of we can refer to the aspects of attributes and behavior of the individual

object without relating to other objects, therefore, we can use both strategies #1 and

#3 to classify objects. This form of classification is called Encapsulation. In other

word, Encapsulation is a specific form of classification. The result of encapsulation

is called Class. The aspect of relationship will be handled outside the class because it

is relating two of more classes.

Attributes
This is the most obvious aspect of the object, especially the physical objects. The

attribute is holding certain value(s) that will represent the State or Status of the object.

For example, student x is an object. The name, CGPA, and age, are the example of the

attributes for the student x. The attribute value of name for student x is “Tong Sam

Pah”, age is 16, and CGPA is 2.1. The value 2.1 for CGPA indicates that the student x

is in the weak (state), and 16 for age indicates s/he is young (state).

Behavior
Behavior is the general description of how an object replies to certain operations. For

example, Ali is strange (Behavior) because of the way (Method) he walk (Operation).

Behavioral aspect normally describe with the “Adjectives”, it is high-level description.

Sometimes it is more convenience to refer to what are the Operations that can be

applied to the object. These operations normally can be referred as verbs. And the

ways how these operations being carried out are called Methods. Method is the

implementation of Operation.

Relationship
The relationship of the object must involve other object(s). Because of this reason, we

relate different classes of objects to capture the relationship.

Basically, relationships can be divided in to the following categories:

1) Is-A or Kind-Of

2) Consists-Of or Part-Of (Aggregation and Composition)

3) Ordinary relationship (Association)

4) Dependency

5) Realization

This course we only consider the first 3 categories and binary relationships.

Given two classes X and Y, where related via relationship R. How can we find out

which type of relation R is? The following technique is the way to find out:

(Go through each type challenge in top-down sequence)

Challenge 1: Is-A or Kind-Of

Ask two questions:

Q1) Is class X Is-A/Kind-Of class Y?

Q2) Is class Y Is-A/Kind-Of class X?

4 possibilities:

Q1 Q2 Result Remark

True True Not adequate This is normally happen when X and Y are referring to

the same class of object, or we call this as synonym.

The development team needs to decide to select only

one. For example, when X is Client and Y is Customer.

True False Is-A Exist X is a specific case of Y, or Y is more general than X

False True Is-A Exist Y is a specific case of X, or X is more general than Y

False False Is-A not exist Try the next challenge

The generic class is called the Superclass of the other class, and the specific class is

called Subclass of the other class. We only can use the superclass/subclass with

referring to two classes with the Is-A relationship.

Multiplicity (or Cardinality) does not make any sense to this type of relationship. We

will discuss more about multiplicity in other form of relationship.

Challenge 2: Consist-Of or Part-Of

When we say X Consists-Of Y, this implies that Y is Part-Of X.

Ask two questions:

Q1) Is class X Consists-Of Y?

Q2) Is class Y Consists-Of X?

4 possibilities:

Q1 Q2 Result Remark

True True Seldom

happen

This situation normally happens when both X and Y

referring to the same class. We call this as recursive

aggregation/composition. For example,

1) Chicken and Egg: The chicken has egg and egg

has chicken

2) Parent-Child Window: The MDI under the GUI

environment, Windows might consist of other

windows.

True False Consists-Of

Exist

X is the container Object

False True Consists-Of

Exist

Y is the container Object

False False Consists-Of

not exist

Try the next challenge

If the Consists-Of/Part-Of relationship exists, there are 2 possible variation of this

relationship.

1) Composition – “Must has”, e.g., “Classroom” Consists-Of “Table”

2) Aggregation – “Can have”, e.g., “Classroom” Consists-Of “Air-Con.”

Multiplicity for this type of relationship is 1-to-Many or 1-to-1. The container object

is always 1.

Challenge 3: Ordinary Relationship

If both Is-A and Consists-Of challenges fail, then the relationship is considered

ordinary. Few characteristics can be observed:

1) The name is need for the relationship, or the roles for both classes.

2) The multiplicity can be many-to-many.

3) Relationship can be directional (lecturer teaches student, and student learn

from lecturer) or bidirectional (friendship, enrollment)

Subject Student

Example of using Name (Bidirectional)

* * Enrollment

Book Student

Example of using Name (Directional)

* Owns

Polymorphism
Two classes might response differently to the same operation. This is called

Polymorphism. For example, Ellipse is the superclass of Circle. Circle might use

different method to the common operation “Rotate” because rotation at the center

point make not different to the circle objects.

Generalization
The process of deriving a superclass from the existing classes called Generalization.

Specialization
The process of deriving subclass from existing class called Specialization. There are 3

typical reasons for specialization:

1) Specialization for Extension – Subclass has something more

2) Specialization of Restriction – Subclass lacking of something

3) Specialization for Overriding – Subclass has something different

Instantiation
The process of deriving object from existing class called Instantiation. When we use

the term Instance on object xyz, we must relate the object to the class. If class X is

the subclass of class Y, all the Instances of X also the instances of Y. These instances

will normally Inherits whatever we define in both classes X and Y. In this case, the

object xyz is the Direct Instance of X, and it is the Indirect Instance of Y. For

example, Ali is a Malaysian, and if Asian generally is friendly, therefore Ali is

friendly too because of Malaysian is an Asian.

Abstract Class
Sometime a class is not completely defined under certain circumstances. This class

will be referred by its existing subclasses. Therefore, direct Instantiation is not

possible. This type class is called Abstract Class. This normally happen during the

process of generalization that cause new more general classes to group common

aspects of existing classes.

Learner

Mentee

Candidate

Teacher

Mentor

Supervisor

Lecturer Student

Example of using roles

Taxonomy
In order to represent the relationship between different species of living thing (such as

Orchid, Japanese Koi Fish), biologists build Taxonomy about them. In OO

Technology, we borrow this term to describe the IS-A relationships among different

classes in the system.

Foundation Class
When we place the classes in taxonomy, the class on the top are more general then the

classes at the bottom, or the classes at the bottom are more specific then the classes on

the top. The more general classes are more reusable then the more specific classes and

we call them as Foundation Classes. There many example of foundation classes that

we can use to build software, such as MFC (Microsoft Foundation Classes) from

Microsoft, Object Window from Borland, Swing from Sun Microsystem.

Important Keywords
1 Object 16 Abstract Class

2 Identity 17 Taxonomy

3 Attributes 18 Generalization

4 Attributes Value 19 Specialization

5 State 20 Multiplicity

6 Behavior 21 Inheritance

7 Relationship 22 Multiple Inheritance

8 Operation 23 Instantiation

9 Method 24 Instance

10 Abstraction 25 Direct and Indirect Instance

11 Classification 26 Information Hiding

12 Encapsulation 27 Polymorphism

13 Class 28 Aggregation

14 Superclass 29 Composition

15 Subclass 30 Foundation Classes

Shape

Arc Polyline

Ellipse

Circle

Line Polygon

Triangle Rectangle Hexagon

Square

Example of Taxonomy

